

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

FIBER-OPTIC COMMUNICATIONS

JOAN M. GENÉ BERNAUS

OPTICAL COMMUNICATIONS GROUP www.tsc.upc.edu/gco FIBER-OPTIC COMMUNICATIONS

CONTENTS

1.INTRODUCTION 2.OPTICAL FIBER **3.**OPTICAL SOURCES **4.** EXTERNAL MODULATORS **5.**OPTICAL RECEIVERS **6.**OPTICAL AMPLIFIERS **7.** FIBER-OPTIC NETWORKS

3. OPTICAL SOURCES

INTRODUCTION TO OPTICAL SOURCES

- **CHARACTERISTICS, TYPES, AND APPLICATIONS**
- LIGHT MATTER INTERACTION
- PHYSICAL PRINCIPLES OF SEMICONDUCTORS
- QUANTUM EFFICIENCY
- LED DIODE
 - WORKING PRINCIPLE
 - LIGTH CURRENT CHARACTERISTIC
 - POWER SPECTRAL DENSITY
 - COUPLING LOSSES

LED DYNAMICS LED'S RATE EQUATION LED'S DIRECT MODULATION **LASER DIODE** WORKING PRINCIPLE **MATERIAL GAIN OSCILLATION CONDITION** SINGLE-MODE OPERATION LASER DYNAMICS LASER'S RATE EQUATIONS **THRESHOLD CURRENT** LASER'S DIRECT MODULATION ADVANCED LASER STRUCTURES **DFB, DBR, EXTERNAL CAVITY, VCSEL**

INTRODUCTION TO OPTICAL SOURCES

TYPES AND APPLICATIONS

LED

- \Box Visible \rightarrow visualization
- \Box near IR \rightarrow telecom

LASER DIODE

- Visible
 - \rightarrow industry
 - \rightarrow medicine
 - \rightarrow space telecom
- \Box near IR \rightarrow telecom

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

telecom

General Aspects

Aspects Ŋ enei 5

DESIRABLE CHARACTERISTICS

- EMISSION FREQUENCY
- HIGH E/O CONVERSION EFFICIENCY
- FIBER COMPATIBILITY (COUPLING)
- WORKING TEMPERATURE AND STABILITY
- HIGH SPECTRAL PURITY (LASER)
- LINEAR LIGHT-CURRENT RESPONSE
- HIGH MODULATION SPEED
 - SMALL SIZE AND CONSUMPTION (INTEGRATION)
- **REDUCED COST**

LIGHT-MATTER INTERACTION

ight-Matter Interaction

Compounds Energy Levels

When considering compounds, the influence of neighboring molecules unfolds new energy sublevels. Apart from the original electronic levels, some new kinetic energy levels appear.

https://www.nature.com/articles/srep32620

-ight-Matter Interaction

3. OPTICAL SOURCES – INTRODUCTION

Light Absorption / Emission Processes

"Any given material shows a particular light absorption characteristic. Some of them, under specific conditions, have the capacity of light emission".

 $hf \rightarrow$ photon energy $hf \approx E_2 - E_1 = E_g$ (Energy Gap)

h: C. Planck (6,63·10⁻³⁴ J·s) *f*: light frequency

(STIMULATED) ABSORPTION

"The incident photon is absorbed by an electron which increments its energy level"

Photodetectors

UNIVERSITAT POLITÈCNICA

-ight-Matter Interaction

"An excited electron releases energy in the form of a photon with random frequency, phase, polarization, and direction"

Incoherent light (LED)

(Bose-Einstein statistics)

No. of excited electrons [N] $N_0 \int N = N_0 e^{-t/\tau_r}$

N₀/e

 τ_r

Recombination Lifetime (Exponential Distribution)

 $df = \frac{e^{-t/\tau_r}}{\tau_r}$

 τ_r : Carrier Lifetime \rightarrow "Average time to return to ground state"

29 MARCH 2021

t [s]

STIMULATED EMISSION

3. OPTICAL SOURCES – INTRODUCTION

UNIVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH

SEMICONDUCTORS PRINCIPLES

1. The electrons are located inside energy bands being the last two called the Valence and the Conduction Bands, respectively, separated by an energy gap.

Intrinsic & Extrinsic Semiconductors

RSITAT POLITÈCNIC

Semiconductor Principles

2. Electrons in the CB are not tied to any particular atom so they are free to move along the semiconductor.

3. When an electron gets liberated from its atom and moves to CB leaves a **hole** in the VB which is called to have positive charge.

4. An electron placed in CB may return to VB occupying a hole an releasing its energy that can be in the form of a **photon**. This process is known as **electron-hole recombination**.

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

P-type Semiconductor

Some "acceptor" doping atoms are added which take electrons from the Conduction Band. A positive carrier flux is produced.

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

N-type Semiconductor

Some "donor" doping atoms are added which give electrons to the Conduction Band. A negative carrier flux is produced.

13

14

Semiconducto S Ð Principl

Semi	icond	luctors	for	Optical	Sources

16

15

Post-transition metals Metalloids

Reactive nonmetals

 $\mathbf{E}_{g} = \mathbf{h} \cdot \mathbf{f}_{g} = \mathbf{h} \frac{\mathbf{c}}{\lambda_{g}}$

Material	$E_{g}(eV)$	$\lambda_{g}\left(\mu m ight)$	GAP
Ge	0.66	1.88	Ι
Si	1.11	1.15	Ι
AlP	2.45	0.52	Ι
AlAs	2.16	0.57	Ι
AlSb	1.58	0.75	Ι
GaP	2.26	0.55	Ι
GaAs	1.42	0.87	D
GaSb	0.73	1.70	D
InP	1.35	0.92	D
InAs	0.36	3.5	D
InSb	0.17	7.3	D

(1st window) **Binaries** \rightarrow GaAs (1st window) $\rightarrow Al_xGa_{1-x}As$ Ternaries \rightarrow In_xGa_{1-x}As (2nd & 3rd window) (1st, 2nd & 3rd window) Quaternaries $\rightarrow In_xGa_{1-x}As_vP_{1-v}$

Lelecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

light-current characteristic

Internal / External Quantum Efficiency

$$\eta \equiv \frac{\left\langle \mathbf{N}^{o} \mathbf{phot} / \mathbf{seg} \right\rangle_{out}}{\left\langle \mathbf{N}^{o} \mathbf{e} - \mathbf{h} / \mathbf{seg} \right\rangle_{total}} = \frac{\left\langle \mathbf{N}^{o} \mathbf{phot} / \mathbf{seg} \right\rangle_{out}}{\left\langle \mathbf{N}^{o} \mathbf{phot} / \mathbf{seg} \right\rangle_{generated}} \times \frac{\left\langle \mathbf{N}^{o} \mathbf{phot} / \mathbf{seg} \right\rangle_{generated}}{\left\langle \mathbf{N}^{o} \mathbf{e} - \mathbf{h} / \mathbf{seg} \right\rangle_{total}}$$

$$\eta \equiv \eta_{i} \cdot \eta_{e} Si \rightarrow \eta_{i} \sim 10^{-5} AsGa \rightarrow \eta_{i} \sim 0.7$$

Inefficiency Causes

- Non-radiative recombinations \rightarrow thermal energy
- Phonon \rightarrow kinetic energy
- Stimulated absorption and scattering in the active region
- Emitted light omnidirectionality
- Reflection in the source-air transition

ion EXTERNAL

INTERNAL

Efficiency Quantum

LIGHT-EMITTING DIODE (LED)

LED characteristic figures

> BW up to 100 MHz \rightarrow R_B up to 100 Mb/s

- $> \Delta \lambda$ huge \rightarrow 100 nm
- > P_{OUT} very small \rightarrow -20 dBm

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

telecom BCN

WORKING PRINCIPLE

"LED source is a diode (PN junction) directly polarized which emits light by **spontaneous emission** (incoherent light) thanks to an electron-hole recombination process"

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

Principle Working

Carrier Injection – Optical Power

Principle Working

Light – Current characteristic

"Representation of the optical power emitted by the source as a function of the polarization electrical current intensity"

Principle Working

Power Spectral Density

"One of the main characteristics of LED diodes is its spectral width due to the fact that the light is incoherent (spontaneous emission)"

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Principle Working

Peak wavelength - λ_0 (most probable jump):

Spectral width - $\Delta\lambda$:

3. OPTICAL SOURCES – LED DIODE

FIBER-OPTIC COMMUNICATIONS

Temperature Effect :

$$\mathbf{E}_{0} = \mathbf{E}_{g}(\mathbf{T}) + \frac{\mathbf{K}_{B}\mathbf{T}}{2} \rightarrow \lambda_{0}(\mathbf{T})$$

$$\Delta\lambda(\mathbf{T}) \approx \frac{2\mathbf{K}_{B}\mathbf{T}}{\mathbf{hc}}\lambda_{0}^{2}(\mathbf{T})$$
 $\Delta\lambda_{LED} \sim 0.3-0.4 \text{ nm/}{}^{\circ}\mathrm{C}$

Incoherent Light :

spontaneous emission \rightarrow photons with random frequency, phase, and direction (incoherent light)

Bose-Einstein statistics

$$\sigma_{\rm m}^2 = \langle {\rm m} \rangle (\langle {\rm m} \rangle + 1)$$

Light Coupling

LED LOSSES

Radiation Diagram

Refractive Indices Mismatch (reflection)

$$P_{IN} = 2\pi \int_{0}^{\theta_{a}} (1 - R) P(\theta) \sin \theta \cdot \partial \theta$$
$$R = \left(\frac{n_{ZA} - n_{0}}{n_{ZA} + n_{0}}\right)^{2} \longleftarrow \text{ Fresnel's Law}$$

LED/fiber Effective Area Mismatch

LED DYNAMICS

"The way the carrier equilibrium is restored after a current fluctuation can be modeled by what is known as LED's **rate equation**"

FIBER-OPTIC COMMUNICATIONS

LED Dynamics

LED's modulation - sinusoidal modulation

Modulation Signal Modulation Ш rect $(1+m_I) I_0$

3. OPTICAL SOURCES – LED DIODE

 $\mathbf{I}(t) = \mathbf{I}_{0} \left[1 + \mathbf{m}_{1} \mathbf{e}^{(j\omega_{0}t + \phi)} \mathbf{u}(t) \right]$

LED Modulation irect

Low-pass behavior

|H(ω)|

1

 $1/\sqrt{2}$

modulation cutoff frequency

typically: 10–100 MHz

 $\omega \tau_r$

3dB

1

Digital Modulation

graó de corrent

$$\mathbf{I}(\mathbf{t}) \equiv \mathbf{I}_0 + \left[\mathbf{I}_1 - \mathbf{I}_0\right] \cdot \mathbf{u}(\mathbf{t})$$

$$N(t) = \frac{I_0}{\underbrace{qV}_{N_0}} \tau_r + \underbrace{\frac{I_1 - I_0}{qV}}_{\underbrace{N_1 - N_0}} \tau_r \left(1 - e^{-t/\tau_r}\right) \cdot u(t)$$
$$P(t) = \eta \frac{I_0}{\underbrace{q}}_{\underbrace{P_0}} hf + \eta \frac{I_1 - I_0}{\underbrace{q}}_{\underbrace{P_1 - P_0}} hf \left(1 - e^{-t/\tau_r}\right) \cdot u(t)$$

Modulation Ш irect

LASER DIODE

UNIVERSITAT POLITÈCNICA **DE CATALUNYA** BARCELONATECH

LASER Main Figures

Single-moded (Transversal)

- $\rightarrow \Delta \lambda$ very narrow \rightarrow 10 MHz (0.08 pm) for DFB
- \geq P_{OUT} high \rightarrow 10 dBm (10 mW)
- > BW up to 10 GHz \rightarrow R_B up to 10 Gb/s

J

WORKING PRINCIPLE

"The LASER consists of an optical resonant cavity based on the **stimulated emission** process and provides coherent light"

telecom BCN UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

Equivalent Model

"The LASER can be modeled as an amplification system with feed-back"

UNIVERSITAT POLITÈCNICA DE CATALUNYA

telecom

MATERIAL GAIN

FIBER-OPTIC COMMUNICATIONS

0

cip

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH $[m^{-1}]$ material unity gain **g(**λ) working **g**_{max} $g = (N_2 - N_1) \frac{\lambda^2}{\tau_r 8\pi n^2} \upsilon(f)$ region Δ'λ **g**_{max} $\mathbf{g} \propto \lambda^2$ 2 lineshape $\upsilon(f) \leftarrow \int_{0}^{\infty} \upsilon(f) \partial f = 1$ λ λ [m] function **Material Gain per unit length** mathematical model $g_{m}(N,\lambda) \equiv \overbrace{a(N-N_{0})}^{2} - \gamma(\lambda-\lambda_{p})^{2}$ [m⁻¹] **g(λ) g**_{max} gain coefficient a: curvature factor γ: Δλ λ_{p} : peak wavelength N: carrier density N₀: transparence level λ_{p} **λ** [m] λ_1 λ_2 g_p: peak gain

ser's Working

Π

 α_s : Scattering Loss Coef.

Condition

Lasing

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Propagation Equations (plane wave)

Boundary Conditions

$$E^{+}(z) = E_{0}^{+} e^{\frac{1}{2}(g-\alpha_{s})z} e^{-j\beta z} e^{-j\omega t} \qquad E^{+}(0) = r_{1}E^{-}(0)$$
$$E^{-}(z) = E_{L}^{-} e^{\frac{1}{2}(g-\alpha_{s})(L-z)} e^{-j\beta(L-z)} e^{-j\omega t} \qquad E^{-}(L) = r_{2}E^{+}(L)$$

$$E^{+}(0) = E_{0}^{+}e^{-i\omega t} = r_{1}E^{-}(0) = r_{1}\left(E_{L}^{-}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-i\omega t}\right) \rightarrow E_{0}^{+} = r_{1}E_{L}^{-}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}$$

$$E^{-}(0) = E_{L}^{-}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-j\omega t}$$

$$E^{-}(L) = E_{L}^{-}e^{-i\omega t} = r_{2}E^{+}(L) = r_{2}\left(E_{0}^{+}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-j\omega t}\right) \rightarrow E_{L}^{-} = r_{2}E_{0}^{+}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}$$

$$E^{+}(L) = E_{0}^{+}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-j\omega t}$$

$$E^{+}(L) = E_{0}^{+}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-j\omega t}$$

$$E^{+}(L) = r_{0}^{+}e^{\frac{1}{2}(g-\alpha_{s})L}e^{-j\beta L}e^{-j\omega t}$$

Modulus Oscillation Condition

Condition sing Π

Condition Lasing

Gain Saturation

 $g < \alpha_t \rightarrow$ Unstable Situation (No Oscillation)

$$g = \alpha_t \rightarrow Stable Situation$$

(Oscillation)

 $g > \alpha_t \rightarrow$ Unstable Situation (Saturation)

Phase Oscillation Condition

FIBER-OPTIC COMMUNICATIONS

Condition -asing

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom BCN

Optical Power in the Laser Cavity

FIBER-OPTIC COMMUNICATIONS

slide 68

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

LASER DYNAMICS

"Carrier and Photons concentration can be modeled using two coupled rate equations"

telecom BCN UPC UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Photon Density – Optical Power Relationship

Light Emission

-aser Dynamics

Photon Variation in the Cavity

$$S = S_{0} e^{(g-\alpha_{s})^{2L}} R^{2} = S_{0} e^{(g-\alpha_{s})^{2L}} e^{-2\ln\frac{1}{R}} = S_{0} e^{\left(\frac{g-\alpha_{s}-\frac{1}{L}\ln\frac{1}{R}\right)^{2L}}} = S_{0} e^{\left(\frac{g-\alpha_{s}-\frac{1}{L}\ln\frac{1}{R}\right)^{2L}}} = S_{0} e^{\left(\frac{g-\alpha_{s}-\frac{1}{L}\ln\frac{1}{R}\right)^{2L}}} = S_{0} e^{\left(\frac{g-\alpha_{s}-\frac{1}{L}\ln\frac{1}{R}\right)^{2L}}} R^{2} = e^{2\ln R} = e^{-2\ln\frac{1}{R}} \qquad \alpha_{t} \equiv \alpha_{s} + \frac{1}{L}\ln\frac{1}{R}$$

$$S(z) = S_{0} e^{\left(\frac{g-\alpha_{s}}{d}\right)^{d}} \xrightarrow{d=v\cdot t} S(t) = S_{0} e^{\left(\frac{g-\alpha_{s}}{d}\right)^{v\cdot t}} = v\left(\frac{g-\alpha_{s}}{d}\right) \cdot S(t)$$

Dynamics .aser

LASER'S RATE EQUATIONS

$$\begin{array}{c} \text{Carriers} & \Longrightarrow & \left| \frac{\partial N}{\partial t} = \frac{I}{qV} - \frac{N}{\tau_{r}} - v \sum_{i=1}^{M} g_{i} S_{i} \right| & [\text{m}^{-3}\text{s}^{-1}] \\ \text{Photons} & \Longrightarrow & \left| \frac{\partial S_{i}}{\partial t} = v \cdot g_{i} S_{i} - v \cdot \alpha_{t} S_{i} + \beta \frac{N}{\tau_{r}} \right| & [\text{m}^{-3}\text{s}^{-1}] \\ \end{array}$$

N: carrier density in the AR S: photon density in the AR g_i: mode's gain parameter M: number of long. modes I: electrical current intensity τ_r : carrier lifetime β : spontaneous emission coeff. α_t : cavity's total losses

 $\mathbf{V} \cdot \boldsymbol{\alpha}_{\star}$

Static Behavior

aser Dynamics

Dynamics

ase

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Laser Activation Condition

$$S = 0 \rightarrow \frac{I_{th}}{qV} = \frac{N_{th}}{\tau_r} \rightarrow I_{th} = \frac{qV}{\tau_r} N_{th} = \frac{qV}{\tau_r} \left[N_0 + \frac{\alpha_t}{\Gamma a} \right]$$
 Th

Threshold Current

The minimum current has to compensate for the Medium's Transparency and Cavity Losses

Photon Density

$$S = \frac{I}{qV} \tau_{p} - \frac{\tau_{p}}{\tau_{r}} \left[N_{0} + \frac{\alpha_{t}}{\Gamma a} \right] = \frac{I}{qV} \tau_{p} - \frac{I_{th}}{qV} \tau_{p} = \frac{\tau_{p}}{qV} \left[I - I_{th} \right]$$
$$I_{th} = \frac{qV}{\tau_{r}} \left[N_{0} + \frac{\alpha_{t}}{\Gamma a} \right] \rightarrow \frac{1}{\tau_{r}} \left[N_{0} + \frac{\alpha_{t}}{\Gamma a} \right] = \frac{I_{th}}{qV}$$

1

Dynamics -aser

Output Optical Power

$$P_{out} = \left((1-R)/2\sqrt{R} \right) \cdot \underbrace{S \cdot v \cdot W \cdot d \cdot hf}_{\overline{p}}$$

$$I \ge I_{th} \quad \tau_{p} \equiv \frac{1}{v \cdot \alpha_{t}}$$

$$S \approx \frac{\tau_{p}}{qV} (I - I_{th})$$

$$N = N_{th}$$

Influence of the active region's length

$$P_{out} = \left((1-R)/2\sqrt{R} \right) \frac{hf}{q\alpha_t \not L} W \not L \left(J - J_{th} \right) \xrightarrow{L \to 0} 0$$

$$\int_{J=1}^{0} \frac{I}{WL} \qquad \alpha_t \equiv \alpha_s + \frac{1}{L} \ln \frac{1}{R} \xrightarrow{L \to 0} \infty \qquad P - \Delta \lambda \text{ tradeoff}$$

$$J_{th} = \frac{qd}{\tau_r} \left[N_0 + \frac{\alpha_t}{\Gamma a} \right] \xrightarrow{L \to 0} \infty \qquad L \uparrow \to \frac{P \uparrow}{\Delta \lambda \not \downarrow}$$

LIGHT-CURRENT CHARACTERISTIC

Light Emission

- $I \rightarrow LED$ -like light, Spontaneous Emission
- $II \rightarrow$ Amplified LED-like light, Amplified Spont. Em.
- III \rightarrow Laser Effect , Coherent Light, Spontaneous Em.
- $IV \rightarrow Saturation$

Threshold Current & Optical Power

$$T \uparrow \longrightarrow I_{th} \uparrow , P_{out} \downarrow$$

Wavelenth / frequency

 $T\uparrow\longrightarrow\lambda_{c}\uparrow$, $f_{c}\downarrow$

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

LASER'S DIRECT MODULATION

ation odu Se σ Σ reci

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Laser Transfer Function – Small Signal Analysis

Laser Modulation rect .

Laser Transfer Function – Small Signal Analysis

$$I = I_{0} + \Delta I$$

$$P = P_{0} + \Delta P$$

$$H(\omega_{0}) \equiv \frac{\Delta P}{\Delta I} = \frac{P_{0} \frac{I_{0}}{I_{0} - I_{th}} m_{I} M(\omega_{0}) e^{j\omega_{0}t}}{I_{0} m_{I} e^{j\omega_{0}t}} = \frac{1 - R}{2\sqrt{R}} \frac{1}{\alpha_{t} L} \frac{hf}{q} M(\omega_{0})$$

$$P_{0} = \frac{1 - R}{2\sqrt{R}} \frac{1}{\alpha_{t} L} \frac{hf}{q} (I_{0} - I_{th})$$

$$\frac{H(\omega_{0})}{H(0)} = M(\omega_{0}) = \frac{\omega_{c}^{2}}{\omega_{c}^{2} - \omega_{0}^{2} + j2\alpha\omega_{0}}$$

$$\frac{1 - R}{\omega_{c}^{2}} = \frac{1}{LC} \frac{L}{\omega_{c}}$$

$$M(\omega_{0})^{2} = \frac{1}{\left(1 - \frac{\omega_{0}^{2}}{\omega_{c}^{2}}\right)^{2} + \left(\frac{2\alpha}{\omega_{c}^{2}}\omega_{0}\right)^{2}}$$

Laser Transfer Function – Small Signal Analysis

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Laser Transfer Function – Small Signal Analysis

FIBER-OPTIC COMMUNICATIONS

Stelecom

FIBER-OPTIC COMMUNICATIONS

telecom BCN UPC UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

MODERN LASER STRUCTURES

Coupled Cavities

COUPLED FABRY-PEROT CAVITIES

FIBER-OPTIC COMMUNICATIONS

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

3

telecom

telecom BCN UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

2n

S U Structu Advanced 5 U S Π

Refractive Index Grating **ACTIVE REGION** $\Delta L = m$ **Power spectral Cavity modes** density **Gain Curve DFB Gain** Curve frequency **Power spectral** Lasing spectrum density frequency

Distributed Feed-Back (DFB) Lasers

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

S U Structu Advanced U S Π

Distributed Feed-Back (DFB) Lasers

telecom BCN UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

S U Structu Advanced U S Π

Sampled Grating DBR (SG-DBR) Lasers – 3 sections

 $\partial \lambda \approx 10 MHz$ tunning ~ 30 nm speed ~ 0.1 ns

Grating Coupler Sampled Reflector (GCSR) Lasers – 4 sections

External Cavity Lasers

telecom BCN UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

S Structu Advancec 5 Se Π

Vertical Cavity Surface Emitting Lasers (VCSELs)

